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are different in the two cases , the decision on the actual case to

be applied is significant.

Through this analysis , we shall point out several important “rules ’
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A h s t r n c t

Several problems of applied probnbiflty lend to the

Investigation of extremes of a sequence of random variables

(floods, strength of materials, failure models, maximn.l queue

length, air pollution data , etc.). it is unrealistic in most
cases to anrume that the random variables in queation are
independen t end identically distributed. However, there are

several dependent models when the distribution of the k—th
largest is well approximated by the distribution of the k—th
largest of independent, and so,me times independent and iden-

tically distributed random vnriables (possibly changing the

fixed size of the sequence in question to a random one). See

the book below , particularly Sections 3.1, 3.12, 6.1 and 6.2,
in which both the possibility of such approximations and the

limit laws when such apnroximation fails are discussed .

We shall describe several models with emphasis on the

possibility of approximations by independent random variables.

In addition , we shall analyze the following embarrassing ques-

tion of an applied scientist: in a r-ample of size n = 1,000 ,
say, is the 10—th largest an extreme in the sense that k=10

is fixed as n increases (if n = 1,000 is not large enough,

take n = 106), or should one consider the l0—th largest as

the ~f~~— th largest ? Since the limiting distributions are

different in the two cases, the decision on the actual case to

be applied is significant.

Through this analysis, we shall point out several Important

“rules” for ar’ply lng asymptotic extreme value theory.

Reference

Gelambos , Janos (1978). The Asymptotic Theory of Extreme Order
Statistics. John Wiley & Sons, inc., New York.

• 
~ I 

(

- - -

~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~ - - -~~ - ~~~~~~~~~~~~~~~~~~~~~ -~~ ~~~~~~~~~~~~~~~~~ -



2.

1 • St ocha st I c Model Pu i id I rig

1.1. General comments. One of the most crucial part of an

~ applied scientist’ s decision is the adoptation of a stochastic
model for the random aunntities X1,X2,..., X~ he in to deal
with. V~hether these random quantities are produced by n~ture

- (floods , winds , etc.), or by a manufactur ing procedure (life
]eng’~hs of comnonenta of an equipment), or the statistician
collects them by random sampling, it is very rare that a sci-
entific reasoning would lead to a unique dependence structure
and a well defined family of distribution s for the X’s. Con—
cequently , the basic underlying dependence and distributional
assumptions are subjective to a large extent. The question
thus arises whether substantially different conclusions can
be reached by two scientists, assuming that both of them work

under “reasonable assumpt i ons”? h ere “reasonable” means that
the assumptions are compatible v.’ith general practice in the

scientific l:ltornture.

For an outsider , the fact alone that this question arises

should be shocking who trusted us that scientific decisions

ought to be unquestionable. Unfortunately, not just the ques-

tion arises but the answer to it Is the real disaprointment:

the subjectivity of model building does influence the other—
wise uiiisuely determined scientific procedure of decision
making. Therefore, the choice of the model has to be based on

more careful studies than a routine accentance of Independence
0 and a family of distributions (normality or other popular ones).

One cannot expect to build a theory of model build i ng ~iith a

general appeal , since the practical problem to be settled should

be a ma jor consideration in adopting a model. Evidently, one

ha~ to be more accurate when human life is involved such as

effects of food additives, drugs and medical treatment or

safety of equipments. Financial and legal considrretions also

increase the demand for more accurate models. But whether newer

anprosohes are morn accurate is very doubtful. The almost daily

_ _ _ _ _  
_ _ _  
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-3.

rejection of food additives on the base of moving awa.y from
the classical assumption of normality to a new underlying
distribution doen not correct the error of the model by which
these same additives were accepted earlier as safe. ~ei.ther
did the model used for the evaluation of air pollution data
become more accurate by changing the assumption concerning

the distribut i on of pollutant concentration first from normal
to logriormnl and more recently to other families, mainly mixtures.
One general ru le  can, however, be set up: decisions of major
imnortance should he reached af ter  the data has been evaluated
in several a l t e rna te  models .

Ex amp le s  in subsenuent ~eet i on~ wil ] supnort all cla ims
of thi s introduction .

1.2. Stochastic models with extremes. In the book, Galambos (1978),
the present author described and developed severa l dependent
models, when the extremes govern the laws of interest. The aim

of the present nnper is to summarize some of these available

models an~ to point to an important direction of future de-

velopment.

Let us start with a list of applied fields where the solu-

tion is in terms of the maximum Zn or minimum W of the

basic random quantities X~, l~~3~~n, associated with the actual

practical prob]em .
The- annual flood on a. river is measured as the max imum

Zn of the daily highest water levels X~ , j~~l. The X’s here

are dependent and closer the observations are in time , the stronger

the dependence is. Within a reason, and at some locations through-

out the year, the X’s can be assumed to be identic~I)y distributed .

in order to plan for building a dam on a river at a given location ,

an accurate description of Z~ is required . If two, or if several

dams are to be built on the same river, then the X’s have to be

measured at those selected l ocations and our interest is the

muitivaripte distribution of the corresnonding Z’o.

Notice that a choice of a mathemntlcal model for the de-

scription of the annual fl ood is equivalent to accepting a concept

— 
- — 
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4.

for a weakening dependence as time passer and a choice for the

common (Iintribl .ltlon of the X’s in a rerson or for the year as

the cs-se may be. Because other applied fie]ds lead to this same
mathematical problem , let us go ahead with the list mentioned

earlier.

The r ando m strength of a sheet of certain material under

stress can be expressed as a minimum W~ on follows. Let us

hypothetically subdivide the sheet into n parts. If X~ is

the strength of the j—th part in this subd ivision , then the
so called weakest link principle tells us that the strength of

the original sheet is indeed W~ of these X~. Again , those
which renresent the strength of dIstant parts have weaker

dependence than neighbouring ones and in fact some kind of almost

independence is valid as distance increases indefinitely . Here,
unit is proportional to the reciprocal of the scuare root of n
(make the hypothetical subdivision of a rectangle in such a way tJ~~t
both edges are divided into m equal parts and set n = m2 ) .
If the division is done into ecual parts, then the X’s can

again be assumed to be identically distributed .

The time to the first failure of a complicated enuipment is

best approached by first grouping components into so called cuts

or pathes. By such an approach, an arbitrary equipment becomes

equivalent to a parallel or series system. However, while parallel

systems are installed for safety considerations and thus they are

expected to function independently, the above reduction procedure

can lead to very complicated dependence structures. The actual
group ing procedure Is as follows. A path is a set of components

whose functioning insures the functioning of the equipment. A

minimal pa th is a path whose number of elements cannot be reduced

without violating the defining property of a path. On the other

hand , a cut is a set of components whose failure causes the equip-

ment to fail.FInn]ly, a minima l cut is a cut with a minima l number

of elements. Now if Xj represents the randsr~ time to the first
failure of the j—th minima l path of the equipment , then Z~ is

~~~~~~~~~TTTI~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ ~~~~~~~~~~~~~



5.

the time to the first failure of the equipment. This same
random waiting time until the equipment fn i.ls can also be
expressed as the minimum W5 of the random timer unto the
fnlJuree of minimal cuts. Since either n or a is l arge
for a complicated equipment , its failure is well described
by an asymptotic model. However, since different path sets
may contain several common components , the assumption of
independence of the X~ Is unjustified even in an approxi-

mate sense. Evidently, a similar ren~ rk applies to cute as

well.

Here we cannot speak of close and distant neighbours

of path sets and yet the dependence structures of the three
problems listed can be described by a unified model. What
will be essentially different in the failure model when
compared with the models for strength or flood that a single

distribution cannot be used for all path sets. We should

rather seek a mathematical solution when each path set is

permitted to have diflerent failure distribution. Strangely

indeed , this generality leads to the mathematical. conclusion

that engineers applied all along: any distribution with mo

notonic hazard rate is an asymptotic failure distribution.

The unified dependence model for the three listed nroblems
is given by a set of random variables X1, X2,..., X~ which

form a so called E~—sequence. Since it is accurately defined

on pp.176—l77 of the author’s book referred to ear].ier, we

describe it here In vague terms only. The requirement is that

a set E~ of exceptional pairs (x1,X~) can be found with

which the fo] lowing three basic properties hold for the original

sequence X~ , l~~j.~ n:

(i) the events ~~X 4~~x3 are asymptotically independent‘it
as x becomes “large” , whenever no pairs of the
subscripts it are exceptional;

(II) if exactly one pair, (i~
,I
~
) say, is except i onal

among the subscripts of X1 , l~~n~~k, then the
a

_ _ _ _ __ _ _  - — _-  - -~~~~~~~~~~~~ .
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- probabilit y of the intersection of the even t~ {X . >  x~
is proportional to the prt duct of ~ x, X~ ~~x)m t
and the univariate tails P(X1~~ x), a / m,t;

and
(iii) the number of elements in the exceptional set E*

is of smaller magnitude than n , which is the number
of a].l pairs of the subscripts of the

Under these conditions , the univariate and bivoriate marginals

of the X
1 

determine whether the maxima , when normelized , have
a limiting distribution and when their do , wha t is the actual
form of thin limiting distribution. There is a simple criterion
available, and which is of wide applicability to app lied questions,
which gua.rnntecs that the limiting distribution 01 the normalized
maximum for an E~—sequence exists and this limiting distribution
is the same as if the X~ were completely independent. However,
when this condition fails, the limiting distribution mmn y still

exist, but the corresponding theory is not well developed for

such case.

This unified approach through E~—seauences covers several

well developed dependence conoepte ouch as rn—dependence and

variants of mixing. As was emphasized earlier, the basic assump-

tions of a model are ma inly a matter of belief when applied in

a concrete situati on; the concept of an E~—nequence is developed

exactly with this dilemma in mind. While the special case of a

mixing concept , say, requires the validity of a weakening de-

pendence for certain sequences of sigma fields as the major

assumption , our only assumption that cannot be checked is (ii).

Namely, one can construct the set in such a way that (I)

and (iii) be auton~nticnlly satisfied. This construction of

for the three problems mentioned Is self evident. For the flood

and strength models, E~ will contain any pairs which represent

“close neighbours”, while, for the failure model, (i ,j) belongs
to If and X

1 
represent life length of such path nets

which have common elements.
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Another a pproach to failur e models is possible through
exchangeable  variables. It is qu i t e  a surprising result that
a kind of averaging is possible in such a sensitive field as
extreme value theory (see Sections 3.1 and 3.2 of the book
by Galninbos (1.978)). We do not discuss this approach here,
but we wish to draw attention to it because of its varied
possibility for further Investigations.

We conclud e this se~tion by mentioning two approaches
to specific problems of extreme value theory which bear in-
teresting mathematical facts. One is the approach by C.C. Heyde
(1971) to queue length, where depend ent variables arc “transformed
to independent ones (bu t with a random number of elements). The
other one is the classical approach by USE. Daniels (1945) to
strength of bundles of threads, in which the opposite Is done:
originally independent variables are “-transformed”to dependent
ones. Interestingly , these dependent variables can also b~ re-
presented as a function of indenendent random variables of random
size, namely , a quantile with random index. However, no attempt
has been made so far to develop the theory of strength of bundles

on this latter line.

Further important applications are touched upon in the next
section where we discuss the effects of the choice of a popule.—
tion distribution.

2. The choice of a population distribution

We speak of a population distribution when a random phenomenon

can be described by a sequence of identically distributed random

variables X1, X2,..., X~. This is the case of floods, strengths

(‘both sheets and bundles), certain failure models (e.g. parallel

and series systems), permitted 1e~vel of n~r pollution concentration

(the US Standard Is set by the second largest observation) and

effects of food additives or drugs on pc~csons belonging to a group

of identical physical conditions. Notice that independence ie.

not emphasized. However, In the 8nalyale that follows it will be

_ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _  ~~ . . . ~~ . .~ 
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on occasion easier to stress a point by assuming that an

approximation by independent variables in ponnible.

Let us pu t, clown some notations. The basic random variables
are denoted by X1, X2,..., X~ . They are assumed to be iden-
tically distributed and we use F(x) for their common distribu-
tion function. We put Zn and W~ for the maximum and the

minimum , respectively, of the X’s, whose distr i bution functions
are H~(x) and L~(x), respectively. Finally, the empirical

distribution function of the X’s Is denoted by F~(x). in the

frequency approach to probability , F~(x) has to be a good approxi-
mation to F(x). But can we rely on any good appr (ximntion to

F(x) if our interest is H~(x) ? As we shall see,no clan~ical
approximation is acceptable and thus specific techn iques are

needed in extreme value theory. Of course, If we know F(x)

accurately through a so called characterization theorem (for

questions of normality , see the book by Kopan , Linnik and Reo

(1973) and for other distributions , the one by Gaisnibos and

Kotz (1978)), then no statistical method is needed .

First let us look at the mean ing of the empirical distribu—

tiori function. By definition , F~(x) 1 for all X>Z~ . The

meaning of this fact is that the jump of F~(x) at Z~ represents

the increament 1 — F(x) of the population distribution for an x

close to Z~ but the actual variation of the tall I — F (x )  Is
not approximated by F~(x) for x’s exceeding Z~ . But since

the tail I — F( x ) alone determines H~(x) for large values of

n, whenever the bacic random variables are almost independent ,
• we simply cannot expect F~(x) to be a guide in apnroximating

H (x). Now vie just have to observe that. both the chi—squared test

for goodness of f I t  and the more frequently used f i t t i ng  by
a specif ic  probability paper are based on I?~ (x )  and we can thus
conclude that classical methods are Inapn l icable  to approximate
F (x )  in extreme value theory . In order to be more specific , let
us look at a numerica l example .

Assume that a random quanti ty X is associated wi th  the
op eration of an equipment (or the human body) .  The equipment  fai ls

— 
. 
_ _ _ _ _ _ _ _ _  -- - -— _____
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If X ex ceed s  3300 and its operation i n  safe in the range
2000 to 3200. We made n = 500 observations on X and all were
in the safety r~-nge. In fuct, W500 2342 and Z500 = 3071.
Furthermore, the ~~~ were varying around the mea.n 2698 with
standard deviation 104, and the red zced values (X—2698)/104
gave a very good fit on a standard normal erobability pnner.

Is it now justified to use a normal table to co’irnute the safety
of 100,000 oauipments , nay ? If a failure means only a financial
lo~s, then not much problem is involved : one computes the expected
number of losses, includes them In the price and gives a warranty
against ions. However , if a ni~gle failure means disaster (loss
of life or permanent damage to humans), then we have to determine

the roru l~ tion distribution F accurately enough that the value
100,000(1 — F(y)) with y =(3300—2698)/104=5.788 be negligible.

Since our observations do not give any information on F(y) beyond
y = (3071—2698)/104 = 3 .587 , a fitting based on these observations

is Insufficient for our purposes. What we actually want in a
good np~rox1mntion to T14,(x) with a = 100,000. A separate paper
is devoted to this nroblem ; see Galambos (1978a)..

~~~ The accuracy of an approximü tc model

The discussion in the preceding section a].ready shows that

accuracy in more significant in extreme value theory than in

most classical statistics]. problems. Unfortunately , very few

speed of convergence estimates are available. There is actually

• only one result on this line which first appeared in the author’s

bock (Section 2 . 1 0 ) .  That result can also be extended to E~—eenuonce~
without much effort. We do not reproduce those results here. Rather

we would describe another problem that also leads to a problem of

accuracy.

In asymptotic theory one distinguishes between unner extremes

and large order statistics depending whether the rank of an order
statistic is fixed or varies with the sample size. More precisely,

let Xk:fl bc the k—th largest among n observations. If k Is

fixed as n increases indefinitely , then Xk:fl is called the

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  —- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~ ~~~~~~ . .~
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k—th upper extreme. On the other hand , i f  k var i es with n

but 1~/n converges to one as n goes to infinity , then we
refer -to Xk :f l  as a large order s t a t i s t i c .  Now , in several
applied fields one faces the problem of evaluating the behaviour

~~ 1k:n where k is small and n is large. Which case applies
if asymnto tic  theory is to be the basic tool ? For example , if
k = 10 and n = 1,000, is Xic:n an uprer extreme or a large
order s tat is t ic  in the above sense i The distinction is significant
because in the case of extreme, a gamm a type distribution is
obtained for the limiting cane while w i th  varying k ( i n  our case

the l im i t i n g  d is t r ibut ion  is related to the normal distribu-
tion . Since the parameters are small here , a norm al  approximation
is not j u st i f i e d  for the gamma. The answer is not an easy one and
a general answer cannot be given . When one decides to use one case

• or the other , the accuracy of the arn rox imat i on  has to be est imated .
This can only be done if the population distribution is known.

• if not , then a method s imilar  to the one described for the maximum
In Galam bos I i 9 7~ a) should be developed . No result  seems to be
available on this line.
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